Circuit Mechanisms of Behavior

2022

Weiler, S.*, Guggiana Nilo, D.*, Bonhoeffer, T., Hübener, M., Rose, T., Scheuss, S. (2022). Functional and structural features of L2/3 pyramidal cells continuously covary with pial depth in mouse visual cortex. Cerebral Cortex, in press
* co-first

Obenhaus, H.A., Zong, W., Jacobsen, R.I., Rose, T., Donato, F., Chen, L., Cheng, H., Bonhoeffer, T., Moser, M.-B., and Moser, E.I. (2022). Functional network topography of the medial entorhinal cortex. Proc. Natl. Acad. Sci. 119, e2121655119.

Weiler, S.*, Guggiana Nilo, D.*, Bonhoeffer, T., Hübener, M., Rose, T., Scheuss, S. (2022). Orientation and direction tuning align with dendritic morphology and spatial connectivity in mouse visual cortex. Current Biology
* co-first

2021

Bauer, J.*, Weiler, S.*, Fernholz, M.H.P.*, Laubender, D., Scheuss, V., Hübener, M., Bonhoeffer, T., and Rose, T. (2021). Limited functional convergence of eye-specific inputs in the retinogeniculate pathway of the mouse. Neuron 1–12.
* co-first

Bauer, J., and Rose, T. (2021). Mouse vision: Variability and stability across the visual processing hierarchy. Current Biology 31

2018

Weiler, S., Bauer, J., Hübener, M., Bonhoeffer, T., Rose, T., and Scheuss, V. (2018). High-yield in vitro recordings from neurons functionally characterized in vivo. Nat. Protoc. 13, 1275–1293.

Rose, T., and Bonhoeffer, T. (2018). Experience-dependent plasticity in the lateral geniculate nucleus. Curr. Opin. Neurobiol. 53, 22–28.

2017

Jaepel, J., Hübener, M., Bonhoeffer, T., and Rose, T. (2017). Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice. Nat. Neurosci. 20, 1708–1714.

Rose, T., and Hübener, M. (2017). Neurobiology: Synapses get together for vision. Nature 547, 408–410.

Keck, T., Toyoizumi, T., Chen, L., Doiron, B., Feldman, D.E., Fox, K., Gerstner, W., Haydon, P.G., Hübener, M., Lee, H., et al. (2017). Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160158.

Clopath, C., Bonhoeffer, T., Hübener, M., and Rose, T. (2017). Variance and invariance of neuronal long-term representations. Philos. Trans. R. Soc. B Biol. Sci. 372

2016

Rose, T., Jäpel, J., Hübener, M., and Bonhoeffer, T. (2016). Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. Science 352, 1319–1322.

2014

Rose, T., Goltstein, P.M., Portugues, R., and Griesbeck, O. (2014). Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7, 1–15.

Marciniak, A., Cohrs, C.M., Tsata, V., Chouinard, J.A., Selck, C., Stertmann, J., Reichelt, S., Rose, T., Ehehalt, F., Weitz, J., et al. (2014). Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology. Nat. Protoc9, 2809–2822.

2013

Rose, T., Schoenenberger, P., Jezek, K., and Oertner, T.G. (2013). Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses. Neuron 77, 1109–1121.

2010

Guetg, N., Aziz, S.A., Holbro, N., Turecek, R., Rose, T., Seddik, R., Gassmann, M., Moes, S., Jenoe, P., Oertner, T.G., et al. (2010). NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1. Proc. Natl. Acad. Sci. 107, 13924–13929.

2008

Schoenenberger, P., Grunditz, Å., Rose, T., and Oertner, T.G. (2008). Optimizing the spatial resolution of Channelrhodopsin-2 activation. Brain Cell Biol. 36, 119–127.

2007

Rose, T., Efendic, S., and Rupnik, M. (2007). Ca 2+ –Secretion Coupling Is Impaired in Diabetic Goto Kakizaki rats. J. Gen. Physiol. 129, 493–508.

2006

Rose, T., Gras, H., and Hörner, M. (2006). Activity-dependent suppression of spontaneous spike generation in the Retzius neurons of the leech Hirudo medicinalis L. Invertebr. Neurosci. 6, 169–176.

2005

Speier, S., Yang, S.B., Sroka, K., Rose, T., and Rupnik, M. (2005). KATP-channels in beta-cells in tissue slices are directly modulated by millimolar ATP. Mol. Cell. Endocrinol. 230, 51–58.

Sedej, S., Rose, T., and Rupnik, M. (2005). cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J. Physiol. 567, 799–813.